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Abstract— Sensor networks are networks consisting of minia-
ture and low-cost systems with limited computation power and
energy. Thanks to the low cost of the devices, one can spread a
huge number of sensors into a given area to monitor, for example,
physical changes of the environment. Typical applications are in
defense, environment, and design of ad-hoc networks areas.

In this paper, we address the problem of verifying the
correctness of such networks through a case study. We model
a simple sensor network whose aim is to detect an event in a
bounded area (such as a fire in a forest). The behavior of the
network is probabilistic, so we use Approximate Probabilistic
Model Checker (APMC), a tool that allows to approximately
check the correctness of extremely large probabilistic systems, to
verify it.

I. INTRODUCTION

The recent advances in the field of micro-electronics led to
the design of small low-cost and low-energy devices. These
devices have the ability to communicate on a short distance via
wireless technology. Basically these sensor nodes can sense
various physical quantities using internal detectors, process
data and communicate together using broadcast mechanism.

A sensor network [1], [2] is a network composed of a huge
number of sensor nodes. The sensor nodes are densely but
randomly spread in some place with the goal of coopera-
tively map the entire place. To achieve this task, the sensor
nodes runs ad-hoc network communication algorithms in order
to communicate despite the unpredictability of the network
topology. They also run energy saving processes and low-
energy computation tasks (in order to pre-process the data and
avoiding extra communications).

Typical applications of sensor networks arose in the fields
of health and environment monitoring or military and security
tracking. For example, they can be used in order to detect fires
in a forest, or to detect physical intrusion of highly critical
places (nuclear power plant, bank...).

For computer scientists the challenge is to design algorithms
to allow sensors to communicate efficiently together, and to
achieve computation even if the computational power and
the energy are low. With the design of efficient but complex
algorithms, design or implementation flaws may appear and
ensuring the correctness and safety properties of the sensor
network becomes the main issue. Many methods are dedi-
cated to the verification of distributed systems, but for the
verification of sensor networks, two characteristics can make
the verification somehow difficult:

• the behavior of the sensor network is probabilistic: the
nodes are randomly disseminated and they mostly achieve

a probabilistic behavior (generally in the memory saving
process and in the collision avoidance mechanism for the
wireless communications);

• the number of nodes in the network is extremely large,
making the thorough verification intractable in most
cases.

Model checking [3] and testing [4] are two methods that
can be used for the verification of such networks. The idea
of model checking is to construct a model that corresponds
to the behavior of the system and to write the specifications
using a formula of a temporal logic. Model checking will allow
to verify automatically if the formula is true into the model
(i.e. the specification holds). Model checking algorithms are
generally efficient: the complexity is at most polynomial in the
size of the model and exponential in the size of the (small)
specification. The problem here is that the model is so large
that even with this complexity the computation is intractable,
this is the so-called state space explosion phenomenon. Testing
is another approach that can be used. Using testing techniques
means that the system is run on a well selected set of con-
figurations to check if it achieves a good behavior. However,
this approach is not fully automatic and selecting the set of
tests is a difficult task, in particular to ensure that the system
exhibits all possible types of behavior.

In the last year a new model checking technique emerged:
Approximate Probabilistic Model Checking. Using this tech-
nique we can approximately compute the probability that a
model verify a specification [5], [6]. With this method, the
computation time is not necessarily lowered, but the memory
consumption becomes very low (or constant in some cases).
Indeed the space complexity of the method is independent of
the size of the model.

The results we present in the paper are:

• the modeling of a sensor network whose goal is to detect
an event on a grid of arbitrary size and to send a signal
to some specific nodes (an abstract version of a sensor
network whose goal is the detection of, for example, a
fire in a forest);

• various experimental results on this model, thus showing
the interest of using approximate probabilistic model
checking for the verification of sensor networks.

The structure of the paper is as follows. In Section II,
we review the related work on sensor networks and proba-
bilistic verification and in Section III we explain briefly the
approximate model checking method and present APMC, a
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tool that implements the method. Then, in Section IV, we
give a detailed sketch of the kind of sensor network we
consider, together with its modeling. This section pursues with
experiments on the model using APMC. Finally the results are
discussed in Section V.

II. RELATED WORK

Sensor networks are used for military, environmental, or
commercial applications such as intrusion detection [7], dis-
aster monitoring [2] and habitat monitoring [8].

The study of sensor networks is a dynamic field of research.
Researches are conducted in various directions. According to
survey papers [1], [2], sensor networks differ from classical
ad hoc networks by many characteristics such as the density
of the network, the broadcast mechanism, the limited power
of computation, the energy consumption etc.

The two biggest issues in the field are currently the practical
and theoretical design of sensor nodes and the design of dis-
tributed algorithms for sensor networks. It means that almost
everything has to be done: routing algorithms, experiments,
simulation, energy saving algorithms etc.

In [7], some real field experiments deploying over 90
sensors node are conducted to evaluate the performances of
disaster monitoring protocols. The proposed protocols are able
to provide intrusion detection and tracking, based on Logical
Grid Routing Protocols. However, due to the high complexity
of the sensors (they provide heat sensing for man intrusion as
well as magnetic sensing for car intrusion), the high cost of
the physical equipment prevented high scale measures.

Routing protocols were proposed to build virtual coordinates
without location information and route messages based on
virtual coordinates [9], [10]. However, routing induces a single
known destination, which is usually stationary. In this work,
we address the problem of propagating some information to a
mobile sink, knowing a likely path of the sink.

An other issue is the simulation/verification of the behavior
of large sensor networks, in order to save money and time
during the design process. While lots of work in the field use
simulation with tools like Ptolemy [11], J-sim [12], Avrora
[13], and others [14], [15], verification seems to be still poorly
explored — except the approach of [16]. This is somehow
strange since the field of ad hoc networks is widely explored
by researchers from the verification community. In this paper,
we investigate this problem using an approximation-based
verification method.

The research in the field of methods for approximating
probabilistic model checking is quite young and there is
only a few other approaches than the APMC one. In [17],
a procedure is described for verifying properties of discrete
event systems based on Monte-Carlo simulation and statistical
hypothesis testing. In [18], a statistical method is proposed
for model checking of black-box probabilistic systems against
specifications given in a sub-logic of Continuous Stochastic
Logic (CSL). These approaches differ strongly from ours
by using statistical hypothesis testing instead of randomized

approximation schemes. More recently, in [19], a randomized
algorithm for probabilistic model checking of safety properties
expressed as Linear Time Logic (LTL) formulas was given.
This approximation method uses the optimal approximation
algorithm of [20]. In another approach [21] both random
testing and abstract interpretation are used for the verification
of C programs. The main advantage of this method is that it
applies to systems that contain non-deterministic choices (we
discuss about non-determinism in Section V).

III. APMC — THEORY AND IMPLEMENTATION

A. Theoretical foundations

In this paper, our aim is to compute the probabilities that
some properties hold in the behavior of a sensor network.
Basically, the properties are temporal in the sense that we
described the behavior of the system during a fixed period of
time. Moreover, the system is probabilistic since each sensor
has a probability of achieving one of its possible behavior.
For these reasons, the framework of approximate probabilistic
model checking is convenient for the modeling and verification
of sensor networks.

Indeed, the method of [6], described below, has the goal
of approximately compute satisfaction probabilities of Linear
Time Logic (LTL) properties over fully Probabilistic Transition
System (PTS) (or discrete-time Markov chains (DTMCs)).
LTL formulas are built over a set of atomic propositions using
temporal operators. The syntax and semantics of LTL are not
really of interest for this paper, suffice it to know that using
this logic, we can describe the temporal behavior of a system
such as a program or a protocol.

Let us now define the kind of system we study:
Definition 3.1: A DTMC is a tuple M = (S, s, P ) where

S is a set of states, s is the initial state, and P is a transition
probability function.

It means that our goal is to ensure properties of a system
using sequences of states of the system. For us the DTMC
will be the modeling corresponding to the sensor network. In
our framework, a state will be a vector of the actual values
of all the variables of the sensor network. A path will be an
execution of the system, that is the successive values of all
variables.

We denote by Path(s) the set of paths whose first state
is s. The length of a path π is the number of states in the
path and is denoted by |π|, this length can be infinite but we
will only consider here bounded length paths. The probability
measure Prob over the set Path(s) is defined in a classical
way. We denote by Prob[φ] the measure of the set of paths
{π | π(0) = s and M, π |= φ} (see [22]). Let Pathk(s) be
the set of all paths of length k > 0 starting at s in a PTS. The
probability of an LTL formula φ on Pathk(s) is the measure
of paths satisfying φ in Pathk(s) and is denoted by Probk[φ].

In order to estimate the probabilities of bounded properties
with a simple randomized algorithm, we generate random
paths in the probabilistic space underlying the DTMC structure
of depth k and compute a random variable A/N which esti-
mates Probk[ψ]. Our approximation is good with confidence
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(1− δ) after a number of samples polynomial in 1
ε and log 1

δ .
The main advantage is that, in order to design a path generator,
we only need to simulate the behavior of the system and store
the values of all variable at each computation step.

Our approximation problem is defined by giving as input
x a program, a formula and a positive integer k. The model
is used to generate a set of execution paths of length k. A
randomized approximation scheme is a randomized algorithm
which computes with high confidence a good approximation
of the probability measure µ(x) of the set of execution paths
satisfying the formula φ.

Definition 3.2: A fully polynomial randomized approxima-
tion scheme for a probability problem is a randomized algo-
rithm A that takes an input x, two real numbers 0 < ε, δ < 1
and produces a value A(x, ε, δ) such that:

Prob
[|A(x, ε, δ) − µ(x)| ≤ ε

] ≥ 1 − δ.

The running time of A is polynomial in |x|, 1
ε and log 1

δ .

The probability is taken over the random choices of the
algorithm. We call ε the approximation parameter and δ the
confidence parameter. The approximation algorithm we use
consists in generating O( 1

ε2 . log 1
δ ) execution paths, verifying

the formula φ on each path and computing the fraction of
satisfying paths, that is an ε-approximation of Probk[φ].

Theorem 3.3: This approximation algorithm is a fully ran-
domized approximation scheme for the probability p =
Probk[φ] of an LTL formula φ if p ∈]0, 1[.

This result is obtained by using Chernoff-Hoeffding bounds
on the tail of the distribution of a sum of independent random
variables. The time complexity of the algorithm is polynomial
in log(1/δ) and 1/ε. The space complexity is linear in the
length of execution paths.

This method was recently extended to the verification of real
C programs [23], using encapsulation of programs directly into
a specific verifier (to generate executions and verify formulas).

B. APMC tool

The design of Approximate Probabilistic Model Checker
(APMC) started in 2003 [6]. The tool implements the approxi-
mation method, with additive error, described in Section III-A.
It is freely available [24] under GNU General Public License
(GNU GPL) and is under permanent development. APMC
is now a probabilistic distributed model checker that uses
a client/server computation model in order to speed up the
verification process by distributing the path generation and
verification on a cluster of workstations (extensive tests with
hundreds of machines were done). The tool is easy to use and
features a graphical user interface to enter the model, formula
and the approximation parameters.

Since 2003, numerous experiments were done, such as
the verification of various probabilistic distributed algorithms
(mutual exclusion, dining philosophers, leader election...) and
of the IEEE 802.3 CSMA/CD protocol (part of the Ethernet
protocol) [25]. We also released the core computation engine
of APMC into a self-sufficient library, which is now fully

integrated into the state-of-the-art probabilistic model checker
PRISM [26].

Let us now describe more precisely the architecture of
APMC, which is twofold. The first component, the APMC
Compiler, produces an ad-hoc verifier including a sample
generator and a checker for a given model (described in
Reactive Modules (RM) [27]) and a given property (LTL). The
second module, the APMC Deployer, takes this verifier and
the set of available computing resources, deploys the verifier
on this set of computers and collects the result, which is the
approximated value of satisfaction probability of the formula
on the model.

The technique used to approximate this value assumes the
verification of the formula on a large set of independent
samples of bounded length. We use the independence property
of the samples to distribute the generation and verification of
samples [28].

The deployment is performed following a spanning tree
of bounded arity. Each node of the tree runs on a single
computing resource, and spawns children up to the bound on
other available resources. While its parent still accepts results
from it, and until the number of collected samples is greater
than the requested number if it is the root, it generates a
sample and verifies the property on it. At each verification,
counters of false and true samples are updated. Regularly (at
fixed intervals), each node sends its counters of false and true
samples to its parent, and resets them (except for the root,
which awaits the end of the computation to produce these
numbers). When a node receives these counters from one of
its children, it aggregates these numbers as if it produced the
verification.

Using the distributed version of the approximation scheme
of APMC, we were able to verify systems so large that they
are intractable for classical model checking methods [28].
Since a sensor network consists in a very large network with
probabilistic behavior, APMC seems to be well adapted to
verify it.

C. Our methodology

As already stated, our goal in this paper is to compute
the probabilities of some given properties of sensor networks.
In order to achieve this task, we will use APMC, thus
obtaining approximate values of these probabilities. One can
note that using a classical model checker, these values are not
computable since the systems we consider are very large.

Our methodology is the following:
1) Write a model of the system we consider using the RM

language. Here we use some additional tools to ease the
modeling phase.

2) Write the properties we want to check on the model.
3) Launch APMC with the model and the specification as

inputs, together with the verification parameters (approx-
imation and confidence parameters, number of paths to
generate).

As output, APMC gives the probability of each property to be
true in the model, that is, in the system.
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IV. MODELING & EXPERIMENTS

A. Case Study: intrusion alert

In this paper we study the intrusion alert case. The goal of
the sensor network is to detect an event, in a bounded area, and
then to forward the information about it towards distinguished
sensor nodes. In our opinion, such a system can for example
be in real life a sensor network to detect the emergence of a
fire in a forest: the sensors detect the fire and broadcast the
information to some fixed stations. Another application can be
the detection of hostile troops in a battle field.

To complete such a task, each sensor can sense its environ-
ment (to detect the event), can listen and broadcast information
from and to other sensors and can save energy by sleeping for
a limited time.

We propose a simple probabilistic algorithm to achieve this
goal. Sensors may be sleeping or active. When sleeping, a sen-
sor will be waken up by an alarm, and the energy consumption
is at the lowest level. When woken up a sensor flips a coin.
With equiprobability, it tries to sense its environment to detect
the potential event or listen for any message to propagate for
a fixed amount of time.

If it receives a broadcast alert message, the sensor will
forever try to propagate the alert and will broadcast the alert
message up to its battery exhaustion. If it did not receive an
alert message, the sensor programs a new timer alarm and goes
to sleep.

When sensing, if no event is detected, the sensor begins
to listen for a broadcast message and executes the algorithm
previously described. If an event is detected, it begins to
broadcast the alert up to battery exhaustion.

This algorithm is simple, and could certainly be improved
by routing techniques. However, we believe this kind of
behavior is characteristic of sensor networks, which alternate
between two states (normal one, when the sensors sense and
communicate sparingly to lower their energy consumption,
then alert state, when urgent communication at the cost of
high energy consumption is needed). Moreover, although the
algorithm is simple and each sensor has a small number of
states, verifying and evaluating the probability of non trivial
properties, like the probability that an event detection occurs,
are hard to verify and to derive from the algorithm. It is thus
a good case study for the approximate techniques that we
propose in this article.

B. Model and modeling

We model the topology of the sensor networks as a regular
square grid. Each sensor node can detect the event if it happens
in its cell, and can broadcast information to his four neighbors
(see Figure 1). This is a simple solution to define the neighbor-
ing of each sensor, and provide a realistic approach to wireless
connectivity. Any sensor in any cell could be down, thus this
grid topology is only used by our simulation mechanism to
emulate a realistic geographic distribution. Many works on
sensor networks makes the same assumption, and these logical
grids may be built using distributed algorithm in [29], [30],

SENSE LISTEN

BROADCAST

SLEEP

0.5
0.5

detected
Fire

No fire

received
Broadcast

First the sensor is sensing its environment (state
sense), if it detects a fire, it goes directly to the
state broadcast and stays in it forever (that is it
sends without interruption a signal to its neighbors),
otherwise it goes to state listen, where the sensor
is listening its neighborhood. If it catches a broad-
cast, it goes to broadcast in order to forward the
information, otherwise it sleeps (state sleep) for a
while: with equiprobability it goes back to sense
or listen.

Fig. 1. Sensor node behavior

or physically realized using a GPS and an election algorithm
to ensure that at most one sensor is present in each logical
square of the grid.

Instead of modeling directly the sensor nodes, we model
the cell of the regular grid. Each cell can be active (there is
an alive sensor node) or inactive (either the sensor node is
running out of energy or is not present in the cell). Note that
it is semantically equivalent to model the sensor or the cell,
but it is easier to model cells instead of sensors. Each of the
sensor node has a simple behavior depicted and detailed in
Figure 1 and implemented in Figure 2. To avoid the clutter,
this description does not take power consumption into account,
but see Figure 3 for a more faithful description of the sensors.

Real field experiments have demonstrated that wireless
broadcast communication from small and low-cost units are
usually unreliable. Often, messages fail to reach direct neigh-
bors, and may communicate with more remote components
of the field. This unreliable communication media is modeled
here in the listen state. Since each sensor independently may
not be in listen state when a neighbor (near or far) broadcasts,
a message may be lost. The probability law of the listen states
encompasses the algorithm’s behavior and the medium losses.
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module sensor

state : [0..4] init SENSE;

[] state = SENSE -> state = senses ? BROADCAST : LISTEN;
[] state = LISTEN -> state = receives ? BROADCAST : SLEEP;
[] state = SLEEP -> 0.5 : state = SENSE + 0.5 : state = LISTEN;
[] state = BROADCAST -> state = BROADCAST;

endmodule

BROADCAST, LISTEN. . . are constants defining the four possible states of a sensor. senses and senses are sensor-
specific formulas that check whether the event happens at the location of this sensor, and whether one of the neighbors
broadcasts.

Fig. 2. Reactive Module code for a sensor as described in Figure 1

C. Implementation

Our model is written in Reactive Modules (RM), a language
suitable for the description of the behavior of concurrent
systems. It provides domain-specific primitives to describe
the probabilistic behavior of communicating modules. The
implementation of a simple sensor is therefore straightforward,
see Figure 2. Unfortunately, in particular because of the lack
of iteration features, describing a system composed of many
modules is inconvenient. To overcome this limitation, we used
a preprocessing phase, using M4. M4 is a lexical macro
processor, in the spirit of C preprocessor (cpp), but much
more expressive. The definition of the grid reads as follows,
where rm sensor(X, Y) is a macro defining a sensor at
coordinates X, Y:

m4_for([X], [0], MAX_X, [1],
[m4_for([Y], [0], MAX_Y, [1],

[rm_sensor(X, Y)])])

M4 also enables to optimize the description of the modules
according to the parameters of the experiment. For instance,
when power consumption is taken into account, the resulting
module description is more complex to model the batteries,
see Figure 3. An infinite power model could be achieved by
setting the initial battery level to a very large number, but not
only does this incurs additional computations, it also keeps
twice as many variables as needed — a severe penalty.

Because using M4 invites to factor the code as much as
possible, it is easy to extend the model with very limited
changes: adding a global counter incremented by each action
only requires updating the battery-consumption macro.

The use of M4 is also positive to write the LTL specifica-
tions to check; it allows to:

• share a common set of formulas with the RM description
of the system (to avoid by-hand rewriting);

• have the same variation points (with or without batteries,
etc.);

• overcome the same limitations: lack of iteration con-
structs and of genericity.

The specifications check the arrival time of the signal on the
peripheral of the area, thus modeling the fact that the authority
(e.g. firemen) is aware of the fire.

The macro rm foreach boundary is syntactic sugar for
a series of m4 for covering the boundaries of the grid, and
LENGTH is parameter k in Section III-A, the maximal length
of the paths explored — the highest possible value of the timer.

// Test the arrival of the signal at
// 0, 100, 200, ... LENGTH.
m4_for([T], [0], LENGTH, [100],
[true U (t <= T

& (0 rm_foreach_boundary([X], [Y],
[ | rm_state(X, Y) = BROADCAST])))

])

D. Experiments

Using our parameterizable model, we did various experi-
ments. Since APMC is a distributed model checker, we use
several workstations to complete the computations. Notably,
we use Athlon XP2800+ workstations with 512 Mb of RAM,
Athlon XP 1000+ machines and several Pentium IV 3.2 GHz
with 1 Gb of RAM. We set the approximation parameter
ε = 10−2 and the confidence parameter δ = 10−10, thus
generating and verifying at least 940,000 paths for each
formula, according to the Chernoff-Hoeffding bound. All the
workstations are running under GNU/Linux.

We did several experiments in order to sort out the behavior
of the sensor network depending on the values of the parame-
ters. At the beginning, a single event is set — at the center of
the grid — and all the sensors are in the SENSE state; in other
words, the initial time is when the first opportunity is given
to network to discover the event. The various experiments
are described below. Most of them use the same family
of formulas: “probability of detecting the event at a given
moment”. These formulas measure the probability that a sensor
on the peripheral of the area enters the BROADCAST state,
meaning that the event was signaled outside the grid. Formally,
this formula is given by the previous RM expression generated
by the M4 macro, for each model (see Section IV-C).

49
1-4244-0316-2/06/$20.00 © 2006 IEEE.



module sensor

s : [0..4] init SENSE; // The state.
b : [0..15] init 15; // The battery level.

[] s = SENSE -> b’= b - 2 & s’= 0 < b ? senses ? BROADCAST : LISTEN : OFF;
[] s = LISTEN -> b’= b - 3 & s’= 0 < b ? receives ? BROADCAST : SLEEP : OFF;
[] s = SLEEP -> 0.5 : b’= b - 1 & s’= 0 < b ? SENSE : OFF

+ 0.5 : b’= b - 1 & s’= 0 < b ? LISTEN : OFF;
[] s = BROADCAST -> b’= b - 3 & s’= 0 < b ? BROADCAST : OFF;

endmodule

When batteries are taken into account (see Figure 2), each state incurs a cost (SLEEP : 1, SENSE : 2, LISTEN &
BROADCAST : 3), and when no power remains, the sensor is put in an OFF dead state.

Fig. 3. Sensor with power consumption
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Probability of detecting the event vs path length.

Fig. 4. 10x10 grid, infinite energy

1) Estimating the minimal path length for detection: The
goal of the first set of experiments is twofold: estimating the
value of the k parameter (length of generated paths) that
ensures the detection of the event by the stations on the
peripheral of the area, and setting a reference for following
experiments (Figure 4 for a 10x10 grid, and Figure 5 for
20x20). Because it is a “limit” case, the power consumption is
not taken into account (Figure 2). The length parameter must
be big enough to observe the delivery of the signal with a
high probability if it will happen in the complete (infinite)
run, and small enough to spare computer cycles. The graph
obtained is also used to emphasize the role of the batteries in
the following sections.

2) Impact of limited energy: Our intuition is that if the
sensors have only a limited amount of energy available, it
will be difficult for the sensor network to ensure the good
detection of the event. The second set of experiments evaluates
the impact of the limited energy of the sensors (Figure 3). The
delivery of the signal can no longer be guaranteed (Figure 6)
for a limited energy (15 in our experiment).
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Fig. 5. 20x20 grid, infinite energy

0 500 1000
deadline (steps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

in
g 

th
e 

ev
en

t

Probability of detecting the event vs path length.

Fig. 6. 10x10 grid, energy 15
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Fig. 7. 10x10 grid, with initial loss and infinite energy
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Fig. 8. Robustness to initial loss - path length 1200 - infinite energy

3) Impact of loss: The third round of experiments aims at
estimating the impact of the initial loss of modules. See the
Figure 7 to observe how delivery degrades; Figure 8 summa-
rizes the impact of the initial loss onto the delivery of the
signal for a fixed path length of 1200 (this length guarantees
the probability to be one in the ideal case of the experiment
1). We did these experiments to know what happens if the
density of sensors is too low in the field, or if the sensors are
not regularly spread in the area.

4) Larger scale: Another interesting experiment is to com-
pare the probability that the event is detected according the
amount of initial energy to the same probability according
the density of lost processes. However, to have a meaningful
evaluation, this requires much larger deployments than the
other experiments (with a larger grid of nodes). We conducted

a set of experiments on square grids of 2500 sensors to make
this comparison.

It appears that these experiments take too long to compute,
which precluded the inclusion of the experiment in this work
(≈ 10 hours of computation on 200 bi-Opterons 2GHz, with
2GB of RAM, to evaluate the probability on 10,000 paths
of length 100,000). This is due to the current design of the
verification system: it assumes that the path is held in memory
to verify the temporal formula on it. With 2500 sensors,
the model has a large memory footprint, and the verification
process is then limited by the memory bus speed, which is
much smaller than the CPU speed.

The general method of APMC does not require that much
memory. Indeed, other verification techniques, based on the
automaton of the formulas to verify are now being designed
and will remove this memory limitation of APMC. This
limitation on the size of the system was unexpected and is
due to the utilization of the meta-programming tools to build
a system with a large reactive-module representation.

V. DISCUSSION

A. On our experiments

In this section, we comment the results reported in
Section IV-D.

1) Estimating the minimal path length for detection:
As reported in Section IV-D.1, these experiments have two
purposes. One can see that to ensure the detection of the
event on a 10x10 grid one as to set the length of the path
to 1200 (Figure 4) and to 4800 for a 20x20 grid (Figure 5).
It suggest that the length needed to ensure the “convergence”
to 1 is quadratic in the width of the square grid. Experiments
on 30x30 and higher grids seem to confirm this fact. It is
not strange since the propagation time is proportional to the
surface of the grid. Moreover, using these experiments, we
were able to fix, for the other experiments, a value of the length
which is, in a sense, optimal. This is the value that ensures
the good behavior of the system and that has the smallest cost
possible (the shorter the paths we generate are, the better it is
in term of computation time for APMC).

2) Impact of limited energy: In real sensor networks, the
natural question is: “What is the best trade-off between the
cost of the sensor and the energy that it must have?”. Indeed,
it is crucial in the design of a sensor node to provide it with
enough energy to complete its task, but not too much in order
to save money in the process of producing huge numbers of
sensors.

The goal of our experiment (Section IV-D.2) is to show that
there are values of the energy that are not sufficient to ensure
the good behavior of the system. It is important to see that
it is not the fact that the performance is worse with a small
amount of energy, but the fact that the task is not completed
anymore.
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For example (see Figure 6), an energy of 15 is not sufficient
in our model to make sure an event is detected. Indeed there
is a plateau phenomenon: the value of the probability stays
around 0.7 forever for paths with length greater than 700. This
means that the probability for a fire to be detected is at most
70%.

3) Impact of loss: The third round of experiments,
Section IV-D.3, measures the impact of the initial loss of
sensors with infinite energy. Figure 7 clearly demonstrates it,
with a quasi-linear loss of messages at the beginning, and
then a severe degradation. Figure 8 amplifies the observation:
with a nearly perfect spreading of sensors there is an exact
correspondence between the percentage loss of sensors and
that of messages. When about 40% of the sensors are lost, the
probability of delivery of the message drops.

We interpret this fact by the existence of two phases in
the functioning of the sensor network. The first phase, with
more than 70% of working sensors, is “plastic” and robust
to sensor loss: the message will be delivered, but with an
(linearly) increasing delay. The second phase, below 60%, is
more “solid” and can no longer cope with additional loss: the
network is broken and not reliable anymore.

This observation naturally leads to the following question:
what can the operator do to improve and/or repair the net-
work? There are two obvious means: spreading new sensors, or
build sensors with more energy to trade in energy for density.

4) Larger scale: In the view of the previous experiments, it
is clear that another set of experiments is needed to evaluate
the impact of energy versus density. If there are only few
sensors but with a lot of energy for each of them, is the
probability of detecting the event higher than in the case where
there are a lot of sensors with only a limited amount of power?

The goal is to know what is the more prominent parameter
in the behavior of the sensors: the energy or the density/num-
ber of nodes in the network. Basically the answer to this
question is very important since it has an impact of the
design of the sensors: is it better to have few costly sensors
(low number/high energy) or a lot of cheap sensors (high
number/low energy).

According to small scales experiments it seems that the
answer is not so simple: the energy is important when the
density is still not critical (like we showed in the experiments
about the density) and that after a value (that depends on the
size of the grid) even with infinite energy and very long paths
it is not possible to ensure a correct behavior of the system
(e.g. detection of the event).

And unfortunately, as reported in Section IV-D.4, we
reached a limitation of the current implementation of APMC
which is well suited for large models, but uneasy on large
compositions of small components. These experiments are
delayed to future work, once APMC adjusted to cope with
a wider range of model types.

5) In general: We just want to argue about the fact that
these experiments show the interest of our approach. We think
that this interest is twofold: first it allows to verify a posteriori
the correctness of the behavior of a large sensor network
(routing algorithm, energy saving process...); second, and in
our opinion this is the main point, it allows to modify a
priori sensor and network algorithms by detecting flaws in
the design of the system. This is crucial since the design and
the production of sensor networks is a sensible and money-
consuming activity.

B. On our modeling using Reactive Modules

While, Reactive Modules (RM) does provide some abstrac-
tions — constants (BROADCAST. . . ) and formulas (senses. . . )
— unfortunately they cannot be parametrized. As a matter
fact, there is no clean parametrization features in RM, which
is troublesome to implement a 20x20 grid of sensors. A weak
form of parametrization is available, which is basically a
clone-and-substitute: an existing module can be renamed into
another one, with inner names being replaced by specified
values. This mechanism proved to be inconvenient for the
problem at hand, in particular because it does not cope easily
with variations — such as the number of neighbors. To worsen
the matter, RM does not provide loops or any other form of
mechanization of the clone-and-substitute steps.

To put it in a few words, RM provides no meta-
programming features. Meta-programming1 denotes the ability
to write programs that write programs, or rather in the current
context, the ability to describe generic components and how
to instantiate, parametrize, and tailor them statically, i.e., at
compile time. Although providing higher levels of abstraction,
meta-programming does not come with a run time penalty
since the meta-program is run by the compiler at compile time,
producing in an intermediate step a regular program. Some
environments support meta-programming with varying degrees
of flexibility and usability. C features a very limited meta-
programming expressive power, but with a tolerable syntax
thanks to cpp. M4 is one of the most pleasing alternative in
the same tradition of lexical macro processors, but it comes
with similar limitations: lack of consistence with the syntax
of the host language, low-level lexical expansion that prevents
catching errors of syntax or of typing, etc.

An interesting lead for future investigations is to define a
higher level RM and its processing chain. A smart compiler
performing traditional optimization techniques — such as
constant folding, dead code elimination, copy propagation etc.
— would tailor generic modules into specific ones just as
we did for the handling of batteries (see Section IV-C). Two
models of compilers can be considered, depending whether
the target is (simple) RM, or some low level form suitable

1 Meta-programming is given several meanings. We use it here in its
sense of the possibility to run code during the compilation. Macro-processors
provide a weak form of meta-programming, C++ ’s templates provide meta-
programming — as demonstrated by expression templates [31]— provide a
similar builtin feature to C++, and multi-staged meta-programming pushes the
concept even further (as in MetaML [32]).
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for a model checker. In the first case, this compiler merely
provides meta-programming to RM, while in the second case
it becomes possible to imagine means to avoid the “space
explosion” due to the creation of huge RM sources. Better
yet, such a compiler could be tunable to trade space and time,
enabling the expansion of higher level compact models into
possible numerous fast and small components. Finally, any
new abstraction (genericity, iteration constructs, etc.) allows
the user to deliver a more faithful description of the model,
enabling the compiler to discover possible symmetries or
invariants which could help the model checker.

C. On APMC

This case study revealed a few facts about the adequacy of
APMC for such experiments.

The built-in support for distribution made it possible to
obtain results in reasonable time (from half an hour for
small scale experiments, up to a couple of hours with bigger
grids). The scheme implemented in APMC 2.0 [28] makes it
very easy to deploy and very reliable, nevertheless it proved
to be too inflexible: true load-balancing is needed to cope
automatically with the varying availability of computers.

The recent addition by one of the authors of the support
for checking multiple LTL formulas at the same time for
each run considerably eased the gathering of all the figures
that were needed. In fact, without such a feature, most of
our graphs would have been impossible to make, or at least
at a much higher cost — human and machine time. Some
features were specifically added for these experiments, in
particular to provide RM with random numbers, but this track
was quickly dropped in favor of using pure RM with an
additional M4 layer (see Section V-B for details on the input
language). Finally, bigger grids exhibited some shortcomings
in the current implementation that should be easy to fix: too
optimistic timeouts that consider for instance that too long a
C compilation means that the compiler failed, incorrect use of
recursion in the LR parser that caused it to blow its stack, etc.

The limitation reported in Section IV-D.4 will draw the
attention of the APMC designers in the short future. Various
well known solutions exists that would improve the mem-
ory consumption in several ways. Another interesting path
of investigation consists in making profit from the form of
formulas. For instance formulas that converged to their limit
no longer need to be evaluated, and henceforth, some paths
no longer need to be computed. This is the case, for instance,
of formulas such as “Probability of arrival before instant T ”
when t is already greater than T .

VI. CONCLUSION

In this paper we presented the modeling of a sensor network
whose goal is to detect the apparition of an event on a grid
of arbitrary size and to send a signal to some specific nodes.
This model can be seen as an abstract version of real life
sensor networks for various tasks. We also conducted several

experiments, showing the interest of using APMC for the
simulation/verification of sensor networks.

Basically, we learned from this case study the peculiarities
of sensor networks in the framework of approximate proba-
bilistic model checking. For example, due to the large number
of nodes, even the modeling task can be a challenge, and the
need of specific tools for modeling seems to be one of the
issue for the verification of such systems.

In the future, we plan to develop specific tools for the
purpose of verifying sensor networks. Both for improving the
modeling and the writing of specifications.
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